National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Silicon substituted calcium phosphate based bioceramic scaffolds
Karkuszová, Karina ; Šťastná, Eva (referee) ; Novotná, Lenka (advisor)
The theoretical part of this bachelor thesis summarizes the current state of knowledge of bioceramic materials based on calcium, phosphorus and silicon. More specifically, it focuses on calcium phosphates, the demands placed on them, the porosity of 3D foams, and biological properties such as biodegradation and bioactivity. 3D bioceramic calcium phosphate foam doped with silicon appears to be a suitable material for use in biomedical applications. It is the silicon that plays a role in the development of healthy bone and the formation of new tissue. Silicon substitutions are important in the field of investigation because they improve the bioassay of phosphate calcium. In the experimental part, calcium phosphate powders were first prepared by the hydroxyapatite and silica fusion reaction. Selected powder contents were 0; 0.1; 1, 2.5, 5, 10 and 20 wt.% SiO2. The samples were sintered at 1100 °C, 1200 °C and 1300 °C. The second part consisted in the preparation of 3D foams by direct penetration with polyurethane and the subsequent characteristics of phase composition, solubility and bioactivity. Bioceramic foams had a highly porous structure. For 42 days, sample behavior in Tris-HCl and simulated body fluid (SBF) was monitored. The results of the experiment have shown that the samples are bioactive and silicon substitution increases phosphate calcium solubility. Therefore, these materials are potentially useful for biomedical applications
Antibacterial properties of bioceramic materials
Achberger, Šimon ; Částková, Klára (referee) ; Salamon, David (advisor)
Implant surgery carries a risk of infection caused by bacterial contamination of the implant surface. An effective way to inhibit proliferation of bacteria is via antibacterial surfaces, however, their usage is medically and technologically difficult. Previous research shows that cicada wing topography exhibits unique bactericidal properties. In this thesis, various topographies were fabricated using heat treatment under hydrothermal conditions. The goal was to produce a surface covered by high aspect ratio structures with 60–215 nm width and 200–300 nm length. A relative density of 85%, 12 hrs long heat treatment and solution pH 4 and 5,6 had a positive effect on formation of thin surface structures. Quantity of morphological changes was proportional to -tricalcium phosphate content.
Antibacterial properties of bioceramic materials
Achberger, Šimon ; Částková, Klára (referee) ; Salamon, David (advisor)
Implant surgery carries a risk of infection caused by bacterial contamination of the implant surface. An effective way to inhibit proliferation of bacteria is via antibacterial surfaces, however, their usage is medically and technologically difficult. Previous research shows that cicada wing topography exhibits unique bactericidal properties. In this thesis, various topographies were fabricated using heat treatment under hydrothermal conditions. The goal was to produce a surface covered by high aspect ratio structures with 60–215 nm width and 200–300 nm length. A relative density of 85%, 12 hrs long heat treatment and solution pH 4 and 5,6 had a positive effect on formation of thin surface structures. Quantity of morphological changes was proportional to -tricalcium phosphate content.
Structural and Chemical Aspects of Calcium Phosphate Formation in Tooth Enamel
Kallistová, Anna ; Skála, Roman (advisor) ; Frýda, Jiří (referee) ; Oldak, Janet (referee)
Tooth enamel is the hardest and most resistant highly mineralized inorganic component in mammalian bodies that significantly affects both the life quality and expectancy of an indi- vidual. Its specific qualitative properties are given by the biomineralization process responsible for its formation. In this process the mineralization of hydroxyapatite (HAp), the only inor- ganic phase composing the mammalian hard tissues, is controlled by activity of enamel-forming cells ameloblasts and their products. Over the past years, the studies of enamel matrix pro- teins, their structure, composition and function has become the prevalent field of experimental investigation. However, unique enamel qualities, which enable the teeth to withstand high pressure and stress demands, cannot be accurately assessed without the thorough systematical study of its mineral compound. In this thesis, I focus on the crystallographic and compositional characteristics of enamel hydroxyapatite and their influence on the mechanical properties of teeth. Obtained results are discussed in context of developmental and adaptation dynamics of mammalian species. The main aspect of the work is to extend our knowledge about the protein-mediated mineraliza- tion process from the perspective of inorganic compound and its contribution to the...
Optimizing and Evaluating the Biocompatibility of Fiber Composites with CaP Additives
Suchý, Tomáš ; Sucharda, Zbyněk ; Balík, Karel ; Sochor, M. ; Bačáková, Lucie
Composite materials based on a polyamide fabric (aramid) and a polydymethyl-siloxane (PDMS) matrix were designed for application in bone surgery. In order to increase the bioactivity, 2, 5, 10, 15, 20 and 25 vol. % of nano/micro hydroxyapatite (HA) and tricalcium phosphate (TCP) were added. The effect of the additives on the biocompatibility was studied. It appears that nano additives have a more favorable effect than micro particles on mechanical properties. For final application of the composites as substitutes for bone tissues, 15 vol. % of nano hydroxyapatite additives is an optimum amount: in this case both the mechanical properties and the biological properties are optimized without distinct changes in the inner structure of the composite.
Silicon substituted calcium phosphate based bioceramic scaffolds
Karkuszová, Karina ; Šťastná, Eva (referee) ; Novotná, Lenka (advisor)
The theoretical part of this bachelor thesis summarizes the current state of knowledge of bioceramic materials based on calcium, phosphorus and silicon. More specifically, it focuses on calcium phosphates, the demands placed on them, the porosity of 3D foams, and biological properties such as biodegradation and bioactivity. 3D bioceramic calcium phosphate foam doped with silicon appears to be a suitable material for use in biomedical applications. It is the silicon that plays a role in the development of healthy bone and the formation of new tissue. Silicon substitutions are important in the field of investigation because they improve the bioassay of phosphate calcium. In the experimental part, calcium phosphate powders were first prepared by the hydroxyapatite and silica fusion reaction. Selected powder contents were 0; 0.1; 1, 2.5, 5, 10 and 20 wt.% SiO2. The samples were sintered at 1100 °C, 1200 °C and 1300 °C. The second part consisted in the preparation of 3D foams by direct penetration with polyurethane and the subsequent characteristics of phase composition, solubility and bioactivity. Bioceramic foams had a highly porous structure. For 42 days, sample behavior in Tris-HCl and simulated body fluid (SBF) was monitored. The results of the experiment have shown that the samples are bioactive and silicon substitution increases phosphate calcium solubility. Therefore, these materials are potentially useful for biomedical applications

Interested in being notified about new results for this query?
Subscribe to the RSS feed.